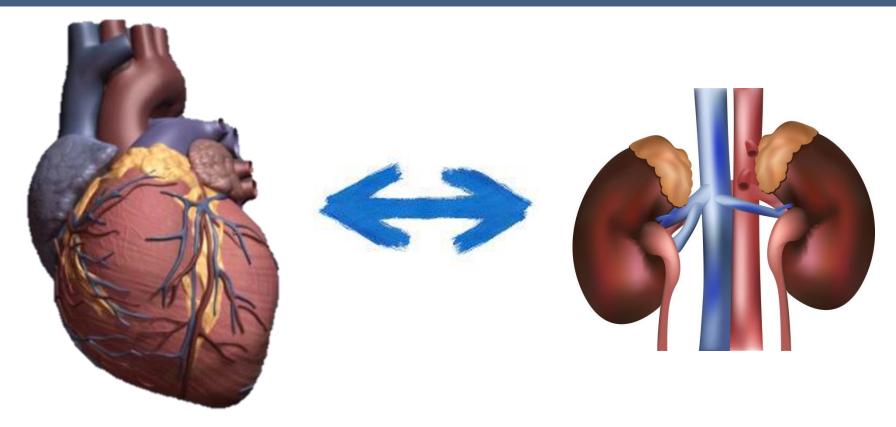


Heart Failure and Renal Disease

17th Apr 2015

Ju-Hee Lee, M.D

Cardiovascular Center, Chungbuk National University Hospital **Chungbuk National University College of Medicine**



What is the *Cardiorenal syndromes?

Definition and Classification

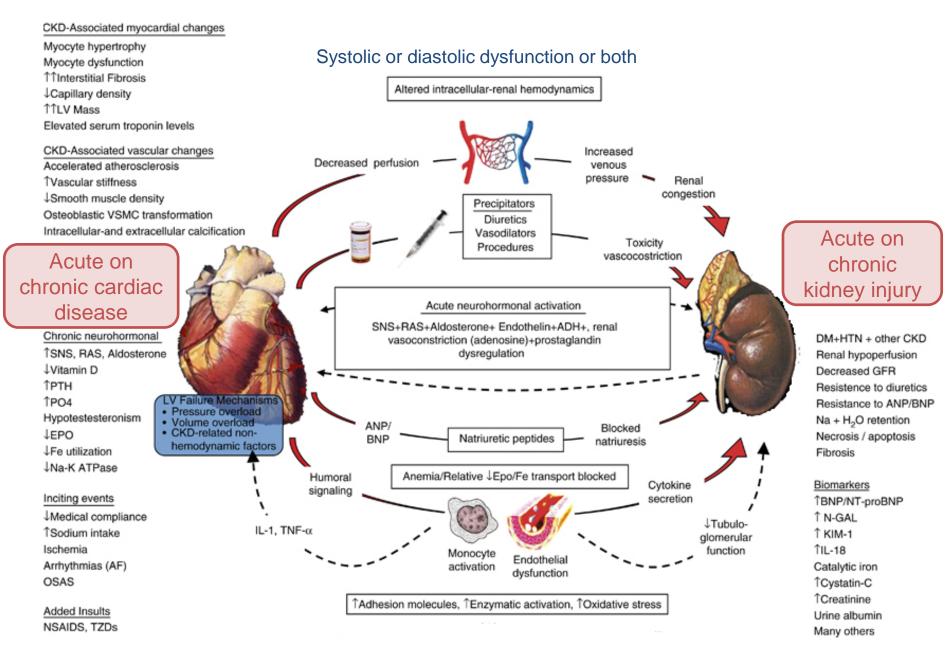
Heart and Kidney

Mortality is increased in patients with HF who have a reduced GFR Patients with CKD have an increased risk of both atherosclerotic CV disease and HF Acute or chronic systemic disorders can cause both cardiac and renal dysfunction

Definition : Cardiorenal syndromes

IIH Nation and B	nal Heart, Lung, lood Institute		Accessible S	se 🔻 SEARCH	
Public	Health Professionals	Researchers	Clinical Trials	News & Resources	About NHLBI
ne » Researchers » Meeting S	Summaries and Scientific Reports »				
ne » Researchers » Meeting s esearchers	Cardio-Ren			lure and Cardiov	vascular
-					vascular

ADOLO		
	onsensu Biomark	
	renal Syn	and the second
Editors P.A. McCullou	uab	
J.A. Kellum R.L. Mehta	agn	
P.T. Murray C. Ronco		
	AD	QI
KARGER		


2004 NHLBI Report

A condition in which therapy to relieve congestive symptoms of HF is limited by a decline in renal function

2013 11th ADQI Consensus Conference

A pathophysiologic disorder of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the other organ

CHUNGBUK Cardiovascular Center

McCullough PA, Diez J, KDIGO 2010 Workshop

Classification of the Cardiorenal syndromes

CRS Type 1 [Acute Cardiorenal Syndrome]

Abrupt worsening of cardiac function (e.g. Acutely decompensated congestive heart failure) leading to acute kidney injury

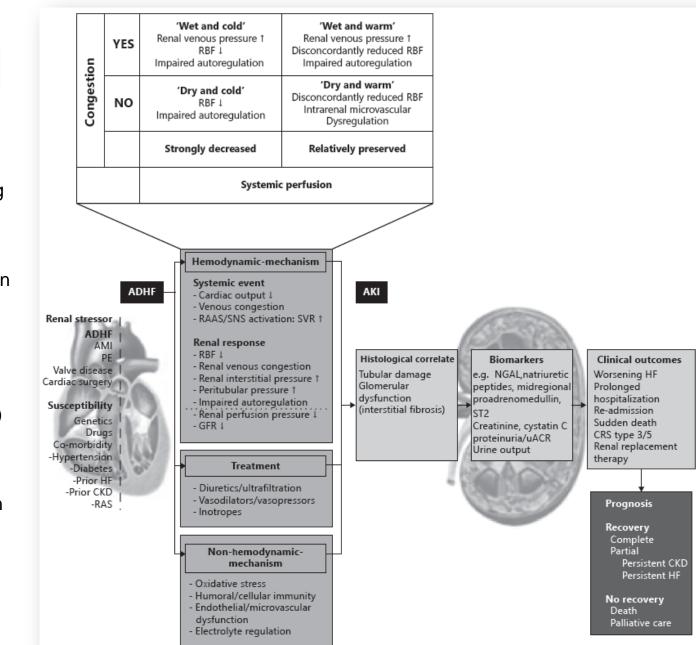
CRS Type 2 [Chronic Cardiorenal Syndrome]

Chronic abnormalities in cardiac function (e.g. chronic congestive heart failure) causing progressive and permanent chronic kidney disease

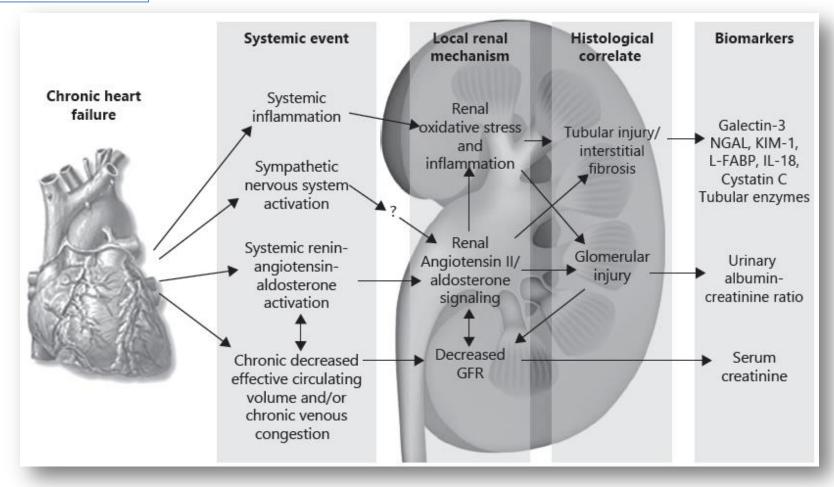
CRS Type 3 [Acute Renocardiac Syndrome]

Abrupt worsening of renal function (e.g. acute kidney injury) causing acute cardiac disorder (acute heart failure)

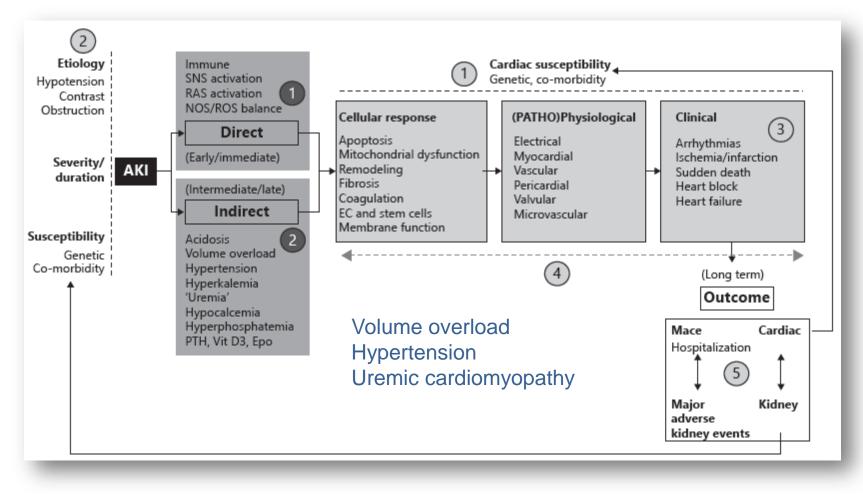
CRS Type 4 [Chronic Renocardiac Syndrome]


Chronic kidney disease (diabetic nephropathy) contributing to decreased cardiac function, cardiac hypertrophy, fibrosis, and/or increased risk of adverse cardiovascular events

CRS Type 5 [Secondary Cardiorenal Syndrome]

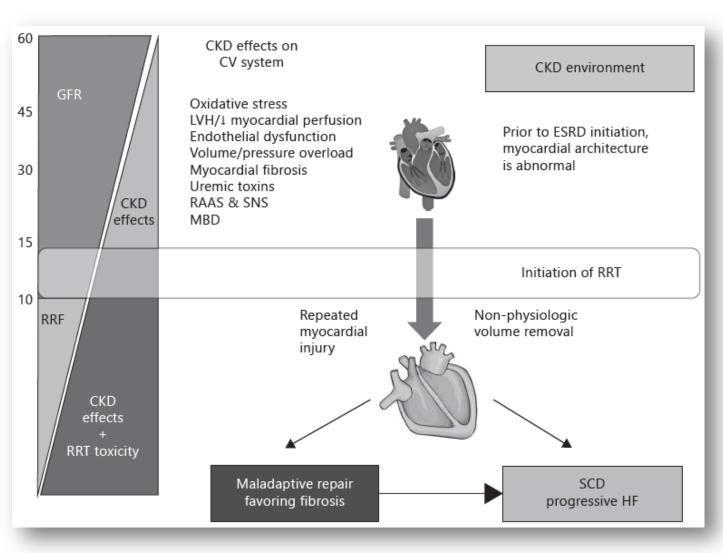

Systemic condition (e.g. sepsis) causing both acute cardiac and renal injury and dysfunction

- Abrupt worsening of cardiac function leading to acute kidney injury
- A syndrome of worsening renal function that frequently complicates ADHF
- 27-40% of hospitalized ADHF patients develop AKI (sCr ≥ 0.3 mg/dL ↑)
- Higher mortality and morbidity, increased length of hospitalization

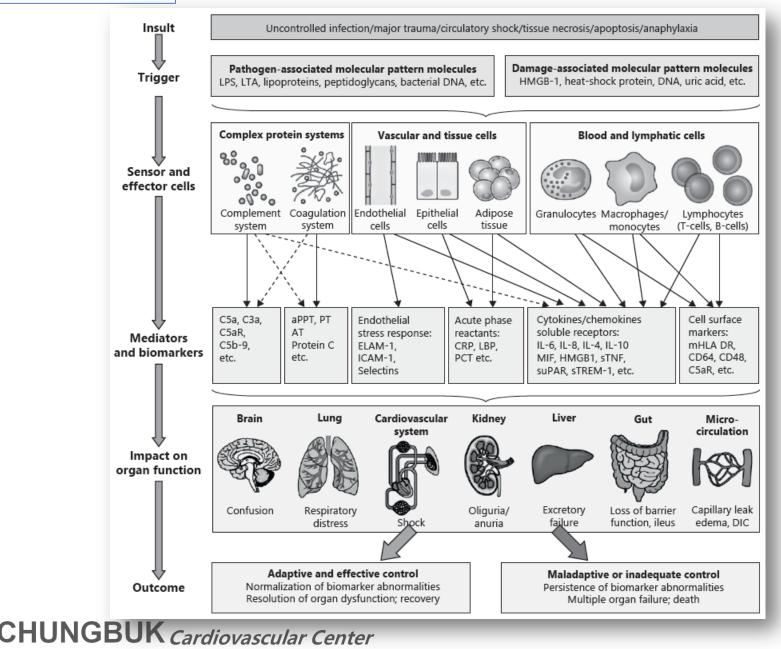


CHUNGBUK Cardiovascular Center

- More chronic HF hastening the progression of CKD
- Approximately 63% of patients with HF meet the definition of stage 3–5 CKD with an estimated GFR <60 ml/min/1.73 m²



- · Abrupt worsening of renal function causing acute cardiac disorder
- · Little is known about the frequency of acute HF following AKI



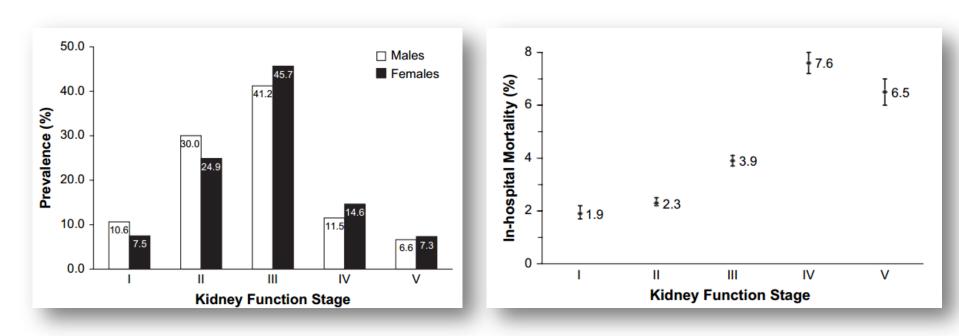
- CKD is an accepted independent determinant for the progression of HF to hospitalization, pump failure death, and sudden death.
- Exponential relation between the severity of renal dysfunction and the risk for all-cause mortality

NATIONAL UNIVERSITY HOSPITAL

"Cardiorenal" Syndrome

Renal dysfunction in advanced HF : CRS 1 and 2

Renal disease in HF


	VMAC* (N = 489)	OPTIME† (N = 949)	ADHERE‡ (N = 105388)
Demographics			
Age	60-62 (13-15)*	66 (14)/65(15)†	72.4 (14.0)
White (%)	58	65	72
Black (%)	24	33	20
Female (%)	31	29	52
Heart failure history			
NYHA II (%)	8	7	20 §
NYHA III (%)	42	46	44 §
NYHA IV (%)	42	47	32§
Prior hospitalizations	NA	1.9(2.0)/2.1 (2.2)† (last year)	1.0 (1.1) (last 6 mo)
LVEF			
Ejection fraction (prehospital)	27 (14)	24 (8)	34.4 (16.1)
Ejection fraction >40% (prehospital) (%)	13.3 (>40)	NA	37
Ejection fraction >40%, or normal or mild impairment of systolic function (either before or during index hospitalization) (%)	NA	NA	46#
Medical history			
Coronary artery disease (%)	65	NA	57
Hypertension (%)	70	68	73
Myocardial infarction (%)	46	48	31
Diabetes mellitus (%)	47	44	44
Renal insufficiency (%)	NA	NA	30
Ventricular tachycardia (%)	13 (sustained)	NA	8
Ventricular fibrillation (%)	6	NA	1
Atrial fibrillation (%)	35	32	31
Baseline medications			
ACE inhibitors (%)	60	70	41
Diuretics (%)	86	90	70
β-Blockers (%)	33	22	48
Angiotensin receptor blockers (%)	10	13	12
Nitrates (%)	35	NA	26
Antiarrhythmics (%)	21	NA	11
Digoxin (%)	61	73	28
Physical and laboratory findings			
Systolic blood pressure (mm Hg)	121 (22)	120 (18)/120(19)†	144 (32.6)
Serum creatinine (mg/dL)	NA	1.5 (0.5)/1.4(0.5)†	1.8 (1.6)
Serum creatinine >2 mg/dL	21	NA	20

CBNUH Cardiovascular Center

Renal disease in HF

ADHERE database

118,456 hospitalized patients

- 59.3% of men and 67.6% of women had at least moderate renal dysfunction (stage III) at the time of admission
- only 33.4% of men and 27.3% of women were reported as having "renal insufficiency" in the database

• In-hospital mortality increased with severity of baseline renal dysfunction

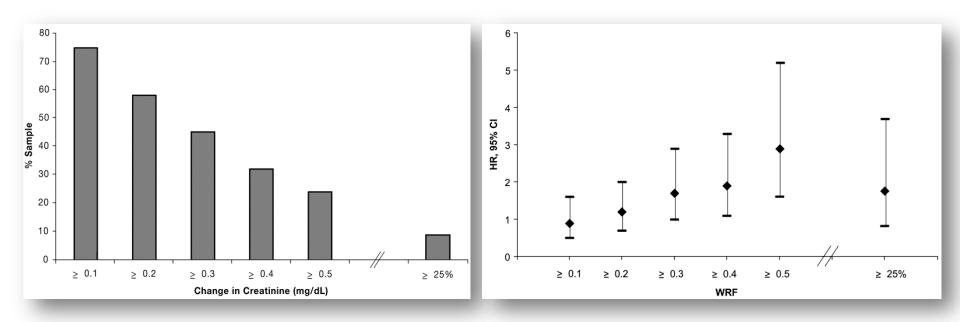
Renal disease in HF

Meta-analysis of 16 studies

More than 80,000 hospitalized and nonhospitalized patients with HF

Study	Year	N*	HR	95%	6 CI	Protective	Excess risk
McClellan	2002	665	1.26	1.11	1.43		+
Shlipak	2005	279	1.38	1.03	1.85		
Dries	2000	2,161	1.41	1.20	1.65		
Dries	2000	3,673	1.41	1.15	1.73		
Mahon	2001	585	1.55	1.18	2.03		
Smith	2005	53,640	1.57	1.54	1.61		
Shlipak	2004	6,800	1.64	1.02	2.64		
Bibbins-Domingo	2004	702	1.84	1.41	2.40		
Hillege	2000	1,906	2.10	1.76	2.50		
Total			1.56	1.53	1.60		•
Heterogeneity X ²	P<0.001						
Overall Z	P<0.001						

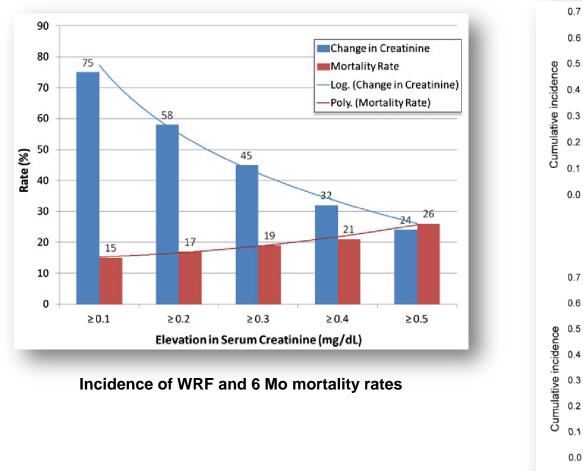
- A total of 63% of patients had any renal impairment, and 29% had moderate to severe impairment.
- Adjusted all-cause mortality was increased for patients with any impairment (hazard ratio [HR] = 1.56; 95% confidence interval [CI] 1.53 to 1.60, p < 0.001) and moderate to severe impairment (HR = 2.31; 95% CI 2.18 to 2.44, p < 0.001).

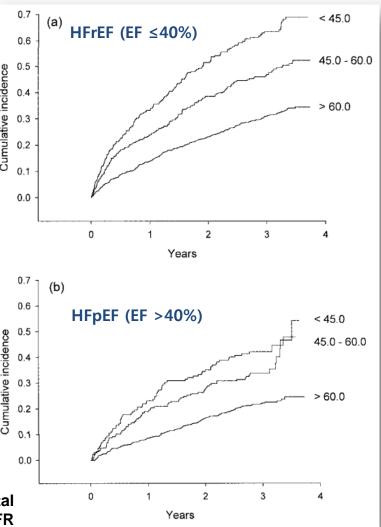

		Renal Impairment						
		Any*	Mod	oderate to Severe†				
Population	%	n/N	%	n/N				
All patients	63	49,163/77,793	29	18,724/65,324				
Non-randomized	69	38,218/55,475	32	17,703/55,475				
Outpatients	51	11,621/23,007	10	1,049/10,538				
Hospitalized	69	37,542/54,786	32	17,675/54,786				

*Creatinine >1.0 mg/dl, creatinine clearance or estimated glomerular filtration rate <90 ml/min, or cystatin-C >1.03 mg/dl. †Creatinine \geq 1.5 mg/dl, creatinine clearance or estimated glomerular filtration rate <53 ml/min, or cystatin-C \geq 1.56 mg/dl.

Worsening renal function

Worsening renal function (WRF)


A prospective cohort of 412 patients hospitalized for HF



- > 70% HF patients experience some increase in sCr during admission
- About 20-30% HF patients experience an increase of sCr >0.3 mg/dL
- Risk of death rose with higher creatinine elevations (adjusted hazard ratio [HR] = 0.89, 1.19, 1.67, 1.91, and 2.90 for elevations >/=0.1 to >/=0.5 mg/dL)

WRF and prognosis

Incidence of cardiovascular death or unplanned admission to hospital for the management of worsening CHF stratified by eGFR

Giamouzis G. Curr Heart Fail Rep 2013;10:411-20 Hillege HL. Circulation 2006;113:671-8

ORIGINAL ARTICLE DOI 10.4070/kcj.2011.41.7.363 Print ISSN 1738-5520 / On-line ISSN 1738-5555 Copyright © 2011 The Korean Society of Cardiology

Open Access

Characteristics, Outcomes and Predictors of Long-Term Mortality for Patients Hospitalized for Acute Heart Failure: A Report From the Korean Heart Failure Registry

Dong-Ju Choi, MD^{1,14}, Seongwoo Han, MD², Eun-Seok Jeon, MD³, Myeong-Chan Cho, MD⁴, Jae-Joong Kim, MD⁵, Byung-Su Yoo, MD⁶, Mi-Seung Shin, MD⁷, In-Whan Seong, MD⁸, Youngkeun Ahn, MD⁹, Seok-Min Kang, MD¹⁰, Yung-Jo Kim, MD¹¹, Hyung Seop Kim, MD¹², Shung Chull Chae, MD¹³, Byung-Hee Oh, MD¹⁴, Myung-Mook Lee, MD¹⁵, and Kyu-Hyung Ryu¹⁶ on behalf of the KorHF Registry

¹Department of Internal Medicine, Seoul National University College of Medicine, Bundang Hospital, Seongnam, ²Department of Internal Medicine, Korea University College of Medicine, Seoul, ³Department of Internal Medicine, Sungkyunkwan University College of Medicine, Samsung Medical Center, Seoul, ⁴Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, ⁵Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, ⁶Department of Internal Medicine, Yonsei University Wonju Christian Hospital, Wonju, ⁷Department of Internal Medicine, Gachon University Gil Hospital, Incheon, ⁸Department of Internal Medicine, Chungnam National University College of Medicine, Daejoen, ⁹Department of Internal Medicine, Chonnam National University College of Medicine, Gwangju, ¹⁰Department of Internal Medicine, Yonsei University Severance Hospital, Seoul, ¹¹Department of Internal Medicine, Yeungnam University College of Medicine, Daegu, ¹²Department of Internal Medicine, Keimyung University College of Medicine, Daegu, ¹³Department of Internal Medicine, Kyungpook National University College of Medicine, Daegu, ¹⁴Department of Internal Medicine, Seoul National University College of Medicine, Seoul, ¹⁵Department of Internal Medicine, Dongguk University College of Medicine, Ilsan Hospital, Goyang, ¹⁶Department of Internal Medicine, Konkuk University Medical Center, Seoul, Korea

CBNUH Cardiovascular Center

Characteristics	Total, n=3,200	Female, n=1,600 (50%)	Male, n=1,600 (50%)	p*
Age (year, mean±SD)	67.6±14.3	70.7±13.5	64.5±14.5	< 0.001
BMI (kg/m ²)	23.2±4.0	23.0±4.2	23.4±3.8	0.009
Previous medical history (%)				
Heart failure	871 (29.6)	453 (30.4)	418 (28.7)	0.313
Hypertension	1,486 (46.5)	787 (49.2)	699 (43.7)	0.002
Diabetes	975 (30.5)	489 (30.6)	486 (30.4)	0.927
Stroke	299 (18.9)	137 (18.0)	162 (19.8)	0.361
Chronic renal disease	295 (9.2)	134 (8.4)	161 (10.1)	0.970
Chronic pulmonary disease	104 (3.5)	43 (2.9)	61 (4.2)	0.055
Underlying disease (%)				
Ischemic heart disease	1,544 (52.3)	828 (53.6)	716 (46.4)	< 0.001
Hypertension	1,143 (36.7)	596 (38.1)	547 (35.3)	0.103
Cardiomyopathy	760 (26.5)	351 (24.3)	409 (28.8)	0.007
Valvular heart disease	407 (12.7)	255 (16.4)	152 (9.7)	< 0.001
Myocarditis	22 (0.7)	8 (0.6)	14 (1.0)	0.187
Infiltrative disease	12 (0.4)	5 (0.3)	7 (0.5)	0.545

*Comparison between the female and male groups. BMI: body mass index

Table 3. Clinical factors and predictors for the long-term clinical outcomes on univariate analysis

Table 5. Chillean factors and pi	ediciona for the long-te		nes on u	invariate analysis				
Characteristics	Total	Expired, n=652	(19.6%)	Alive, n=2,571 (8	0.4%)	HR	95% CI	p *
Age (mean)	67.6±14.3	71.6±13.	.1	66.6±14.5		1.027	1.021-1.034	< 0.001
Women (%)	Table 4. Clinical pr	redictors of the	clinical	outcome on mult	tivariate	.026	0.874-1.205	0.752
BMI (<23 kg/m ²) (%)	analysis					.781	1.490-2.129	< 0.001
Previous heart failure (%)	Characteristics of t	he patients	HR	95% CI	р*	.690	1.428-2.001	< 0.001
Non-ischemic heart failure (%	Age (mean)		1.023	1.004-1.042	0.020	.352	1.146-1.596	< 0.001
Clinical findings	Previous heart failu	ıre	1.735	1.150-2.618	0.009			
SBP (mmHg)	Anemia (Hb <12 n	ng/dL)	1.973	1.271-3.063	0.002	.991	0.988-0.994	< 0.001
HR (bpm)	Hyponatremia (Na	0	1.861	1.184-2.926	0.007	.000	0.997-1.004	0.780
Dyspnea at rest (%)						.499	1.238-1.815	< 0.001
Echo results	NT-proBNP ≥1,00	0 ng/L	3.152	1.450-6.849	0.004			
LVEF (%)	Beta-blocker at dis	charge	0.599	0.360-0.997	0.049	.995	0.990-1.001	0.113
LVEF ≥50% (%)	*Comparison betw	een the expired	l and aliv	ve groups. HR: ha	zard ra-	.948	0.774-1.160	0.601
Lab. Findings	tio, CI: confidence	interval, NT-pr	oBNP: N	-terminal pro-B-	type na-			
Hyponatremia (Na <135 m	triuretic peptide					.226	1.860-2.665	< 0.001
Anemia (Hb <12 g/dL)	1,316 (41.4)	346 (55.5)	970 (38.0)		2.021	1.719-2.377	< 0.001
Azotemia (Cr ≥2.0 mg/dL)	478 (14.9)	150 (24.3)	328 (13.0)		2.291	1.901-2.761	< 0.001
Total-cholesterol (<160 mg/	dL) 1,431 (51.1)	318 (58.3)	1,112 (49.3)		1.393	1.169-1.659	< 0.001
NT-proBNP ≥1,000 ng/L	1,844 (85.1)	374 (92.6)	1,470 (83.4)		2.425	1.661-3.541	< 0.001
Medication at discharge (%)								
Beta-blocker	1,109 (58.6)	137 (40.7)	927 (62.5)		0.441	0.352-0.551	< 0.001
ACEi/ARB	648 (53.7)	103 (39.3)	545 (57.7)		0.504	0.391-0.650	< 0.001
Aldosterone antagonist	913 (53.1)	159 (46.2)	754 (54.8)		0.700	0.563-0.869	0.001
****							ann 1, 11	

*Comparison between the expired and alive groups. HR: hazard ratio, CI: confidence interval, BMI: body mass index, SBP: systolic blood pressure, LVEF: left ventricular ejection fraction, NT-proBNP: N-terminal pro-B-type natriuretic peptide, ACEi: angiotensin converting enzymeinhibitors, ARB: angiotensin receptor blocker

NUH Cardiovascular Center

Choi DJ. Korean Circ J 2011;41:363-71

CARDIOLOGYS

European Journal of Heart Failure (2014) **16**, 700–708 doi:10.1002/ejhf.91

STUDY DESIGN PAPER

A multicentre cohort study of acute heart failure syndromes in Korea: rationale, design, and interim observations of the Korean Acute Heart Failure (KorAHF) registry

Sang Eun Lee¹, Hyun-Jai Cho¹, Hae-Young Lee¹, Han-Mo Yang¹, Jin-Oh Choi², Eun-Seok Jeon², Min-Seok Kim³, Jae-Joong Kim³, Kyung-Kuk Hwang⁴, Shung Chull Chae⁵, Suk Min Seo⁶, Sang Hong Baek⁶, Seok-Min Kang⁷, II-Young Oh⁸, Dong-Ju Choi⁸, Byung-Su Yoo⁹, Youngkeun Ahn¹⁰, Hyun-Young Park¹¹, Myeong-Chan Cho⁴, and Byung-Hee Oh^{1,*}

¹Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea; ²Sungkyunkwan University College of Medicine, Seoul, Korea; ³University of Ulsan College of Medicine, Seoul, Korea; ⁴Chungbuk National University College of Medicine, Cheongju, Korea; ⁵Kyungpook National University College of Medicine, Daegu, Korea; ⁶The Catholic University of Korea, Seoul, Korea; ⁷Yonsei University College of Medicine, Seoul, Korea; ⁸Seoul National University Bundang Hospital, Seongnam, Korea; ⁹Yonsei University Wonju College of Medicine, Wonju, Korea; ¹⁰Heart Research Center of Chonnam National University, Gwangju, Korea; and ¹¹National Institute of Health (NIH), Osong, Korea

Received 8 September 2013; revised 17 February 2014; accepted 26 February 2014; online publish-ahead-of-print 2 May 2014

Table 1 Clinical characteristics of patients hospitalized with acute heart failure syndromes in Korea compared with other registries

	KorAHF	ATTEND ⁸	ADHERE ⁹	OPTIMIZE- HF ¹⁰	EHFSII ¹¹	THESUS- HF ²¹	ADHERE International ²⁰
Region	Korea	Japan	USA	USA	Europe	Nigeria (Africa)	8 Asia-Pacific countries
Time period	March 2011–	May 2007– September 2012	September 2001–January 2004	March 2003– December 2004	October 2004–August 2005	July 2007–June 2010	January 2006– December 200
Sample size	2066 (May 2012)	1110 (June 2009)	159 168	48 612	3580	1006	10 171
Follow-up	>3 years	180 days	N/D	60, 90 days	3, 12 months	N/D	N/A
Demographics							
Age (SD), years	69 (14)	73 (14)	72 (14)	73 (14)	70 (13)	52 (18)	66 (53-77) ^a
Male (%)	55	59	48	48	61	49	57
Co-morbidities (%)						
Hypertension	59	71	74	71	63	56	64
Diabetes	36	34	44	42	33	11	45
Atrial fibrillation	27	40	31	31	39	18	24
Chronic lung disease	11	9	31	28	19	N/A	N/A
Aetiology (%)							
Ischaemic	38	33	58 ^b	46	54 ^b	8	50 ^b
Hypertensive	6	18	N/A	23	11°	45	N/A
Clinical status on a	admission						
De novo HF (%)	50	63	24	12	37	N/A	36
Lung congestion (%)	78	96	67 ^d or 75 ^e	64 ^d	N/A	N/A	80d
Pulse rate (/min)	91 (26)	99 (30)	N/A	87 (22)	Median 95	104 (22)	N/A
SBP (mmHg)	136 (31)	147 (38)	144 (33)	143 (33)	Median 135	130 (34)	N/A
LVEF <40% (%)	56	57	51	49	66 (EF <45%)	N/A	53
Creatinine	1.5 (1.6)	1.4 (1.5)	1.8 (1.6)	1.8 (1.6)	N/A	1.4 (1.2)	N/A
(mg/dL)							
Management (%)							
I.v. diuretics	72	80	87	N/A	84	93	85
I.v. inotropes	32	21	8	7	<29.8	~10.1	15
I.v. vasodilators	40	< 46	9	14	31	7.0 (nitrates)	14
ACEIs/ARBs	65	N/A	83	N/A	80	80-90	63
AAs	40	N/A	33	N/A	48	60-70	31
Beta-blockers Outcomes	44	N/A	80	N/A	61	40-50	41
Length of stay (median), days	8	21	4.3	4	9	7	6
In-hospital mortality (%)	6.1 ^f	7.7	3.8	3.8	6.7	4.2	4.8

BNUH Cardiovascular Center

Lee SE. Eur J Heart Fail 2014;16:700-8

Table 5 Multivariable logistic regression analysis for predictors of in-hospital mortality (n = 1831)

Variables	Adjusted OR (95% CI)	P-value
Lung congestion	2.38 (1.17-4.82)	0.016
SBP <100 mmHg	4.45 (2.69–7.37)	<0.001
Q waves at ECG	1.98 (1.07-3.65)	0.029
RBBB at ECG	2.68 (1.47-4.89)	0.001
White blood cell count $\geq 10 \ 000/\text{mm}^3$	1.82 (1.12–2.96)	0.016
Serum sodium <135 mmol/L	2.06 (1.27-3.34)	0.003
Serum creatinine ≥2.0 mg/dL	2.83 (1.66–4.81)	<0.001
LVEF <40%	1.88 (1.14–3.1)	0.014
Other miscellaneous aggravating factors	3.17 (1.71–5.86)	<0.001
Valvular heart disease as an aetiology of HF	2.12 (1.16-3.89)	0.015
C-statistic	0.807	

Azotemia (sCr ≥2.0 mg/dL) was independent predictors of in-hospital mortality

Lee SE. Eur J Heart Fail 2014;16:700-8

Management

Clinical Challenges

Management of CRS

Improvement in cardiac function

Diuretics

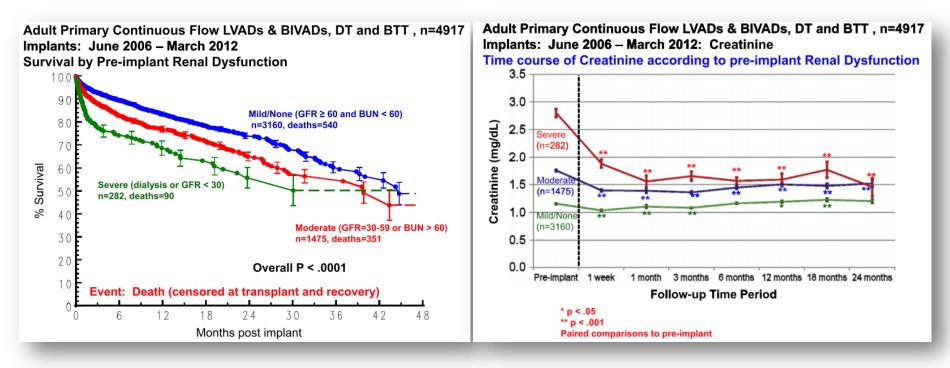
Renin-angiotensin-aldosterone-system antagonist

Vasodilators

Inotropic drugs

Ultrafiltration

Investigational therapies

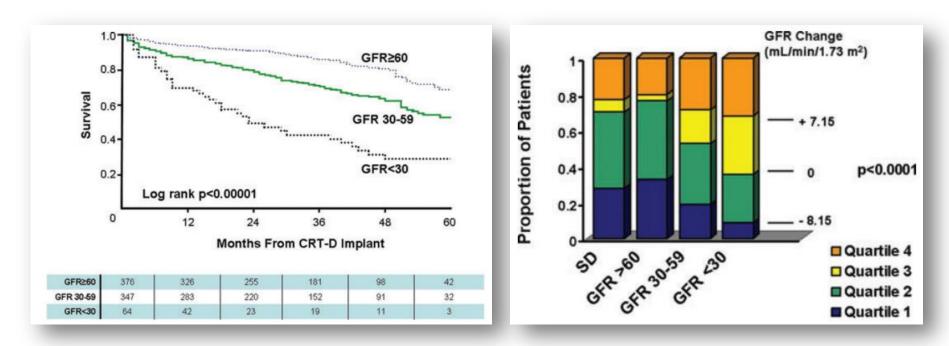

• • • No definite medical therapy to directly increase the GFR

Improvement in cardiac function

INTERMACS registry

4,917 patients with continuous-flow LVADs

- Actuarial survival stratified by degree of renal function reveals that the major effect of severe pre-implant renal dysfunction is on mortality during the first 3 months
- Among all levels of pre-implant renal dysfunction, surviving patients showed significant improvement in eGFR, BUN, and creatinine within 1 month, which remained stable on average over the next 24 months



Kirklin JK. J Heart Lung Transplant 2013;32:1205-13

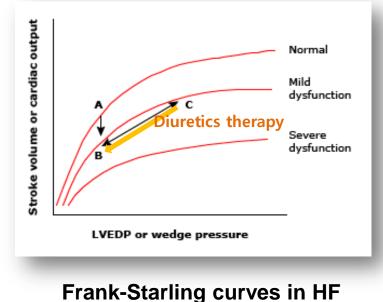
Improvement in cardiac function

MIRACLE trial

787 CRT-D recipients

- Baseline renal function was highly predictive of survival among CRT-D patients; survival was shorter as GFR declined
- Renal function improved in CRT-D patients with a baseline GFR < 60 mL/min/1.73 m², whereas GFR was worsened in those with normal baseline renal function.

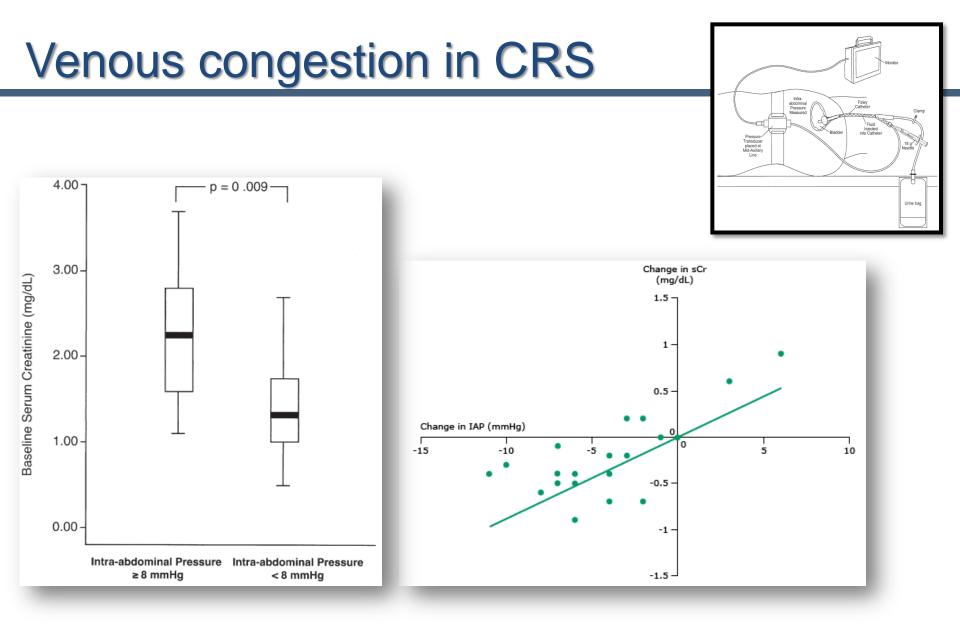
Adelstein EC. PACE 2010;33:850-9


Improvement in cardiac function

- Reversible ?
 - Impaired renal function \rightarrow limitation to correct volume overload
 - Impaired or worsening renal function → mortality ↑
 - It is possible that effective treatment of the CRS could improve patient outcomes
 - Improving cardiac function can produce increases in GFR, indicating that types 1 and 2 CRS have substantial reversible components
- Irreversible ?
 - worse prognosis in patients with HF and impaired renal function could primarily reflect a reduced GFR being a marker of more severe cardiac disease
 - In this setting, improving renal function alone would not necessarily improve patient outcomes

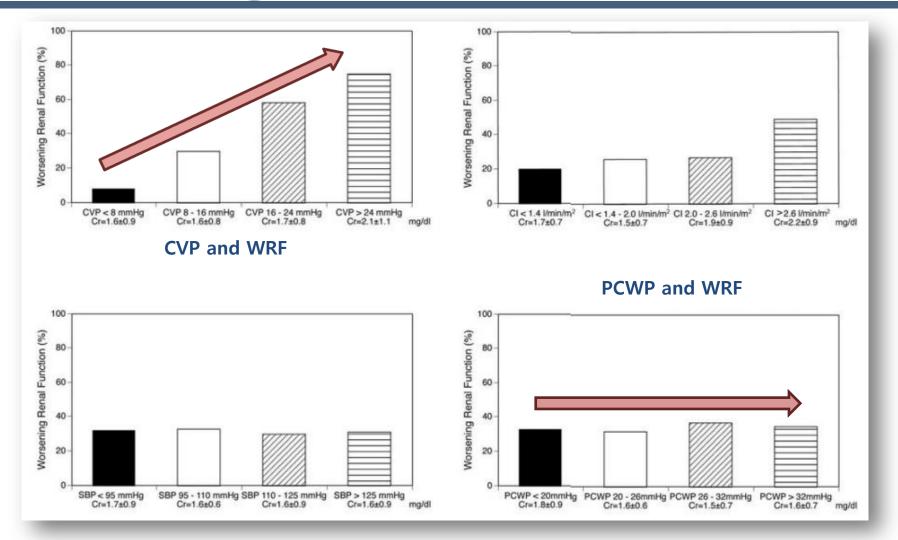
Diuretics cause renal hypoperfusion ?

- Vasodilators and diuretics normalize filling pressure without reducing CO → redistribution of extravascular volume against intravascular volume depletion
- Renal blood flow is preserved until the CI below 1.5 L/m²

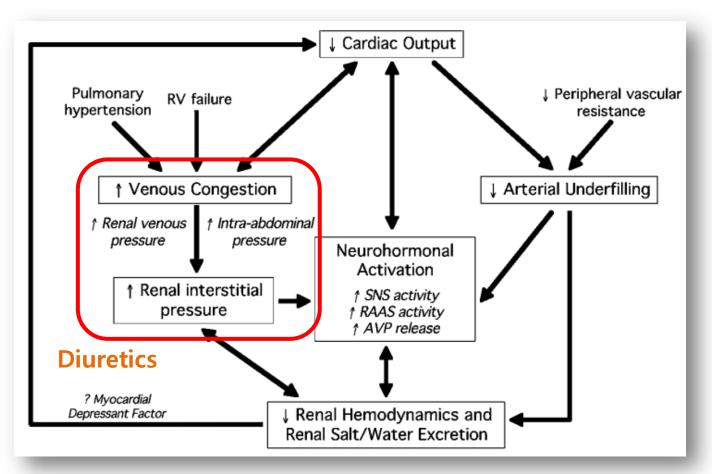


Diuretics

Diuretics

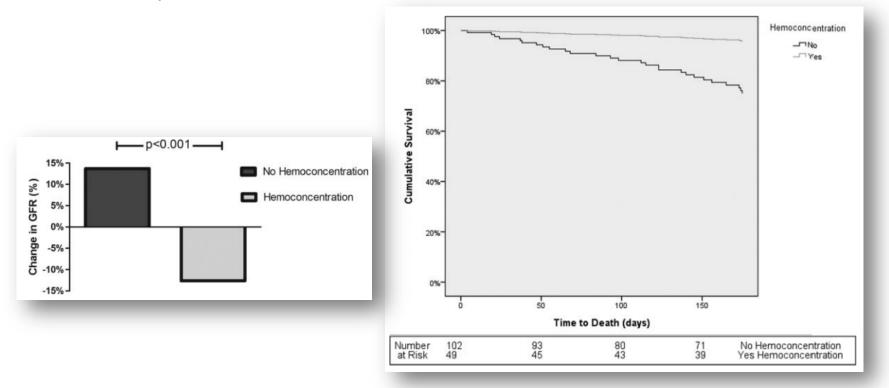

- First line therapy for managing volume overload in patients with HF
- An elevated BUN/Cr ratio should not deter diuretic therapy if clinical evidence of congestion is present

Changes in serum creatinine vs change in intra-abdominal pressure


Venous congestion in CRS

Mullens W. JACC 2009;53:589-96

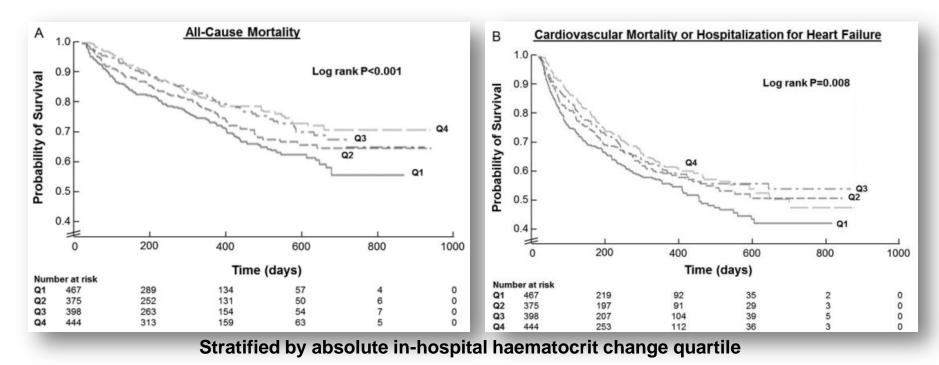
Reduced renal perfusion vs. Venous congestion



Tang WHW. Heart 2010;96:255-60

ESCAPE trial

336 patients with ADHF



- · Patients with hemoconcentration
 - treated with higher doses of loop diuretics, more fluid loss, greater reduction in filling pr
- Hemoconcentration was associated with WRF as well as lower mortality rate

CBNUH Cardiovascular Center

EVEREST trial

1,684 patients with hospitalized HF patients (tolvaptan vs placebo)

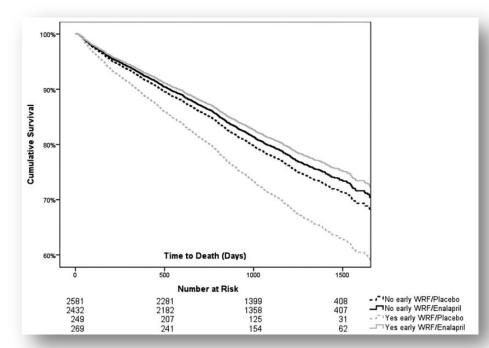
- Hemoconcentration was associated with greater risk of in hospital WRF, though renal parameters generally returned to baseline within 4 weeks of discharge.
- Every 5% increase in-hospital Hct change was associated with a decreased risk of all-cause mortality

2013 ACCF/AHA Guideline for the Management of Heart Failure

A Report of the American College of Cardiology Foundation/American

Class I

and


1. Diuretics are recommended in patients with HFrEF who have evidence of fluid retention, unless contraindicated, to improve symptoms. (*Level of Evidence: C*)

Mariell Jessup, MD, FACC, FAHA, Vice Chair*†; Biykem Bozkurt, MD, PhD, FACC, FAHA†; Javed Butler, MBBS, FACC, FAHA*†; Donald E. Casey, Jr, MD, MPH, MBA, FACP, FAHA\$; Mark H. Drazner, MD, MSc, FACC, FAHA*†; Gregg C. Fonarow, MD, FACC, FAHA*†; Stephen A. Geraci, MD, FACC, FAHA, FCCPI; Tamara Horwich, MD, FACC†; James L. Januzzi, MD, FACC, FAHA, FCCPI; Tamara Horwich, MD, FACC†; Edward K. Kasper, MD, FACC, FAHA†; Wayne C. Levy, MD, FACC*†;
Frederick A. Masoudi, MD, MSPH, FACC, FAHA†; Patrick E. McBride, MD, MPH, FACC**; John J.V. McMurray, MD, FACC*†; Judith E. Mitchell, MD, FACC, FAHA†; Pamela N. Peterson, MD, MSPH, FACC, FAHA†; Barbara Riegel, DNSc, RN, FAHA†; Flora Sam, MD, FACC, FAHA†; Lynne W. Stevenson, MD, FACC*†; W.H. Wilson Tang, MD, FACC*†; Emily J. Tsai, MD, FACC†; Bruce L. Wilkoff, MD, FACC, FHRS*††

CBNUH Cardiovascular Center

Renin-angiotensin-aldosterone-system antagonist

- Variable effect on the GFR in patients with HF
 - Increases in sCr and BUN are often observed after initiation of an ACE inhibitor
 - CONSENSUS trial
 - The mean baseline serum creatinine concentration was 1.5 mg/dL
 - The serum creatinine increased by an average of 10 to 15 percent within the first three weeks
 - SOLVD trial
 - Early worsening renal function (decrease in estimated GFR ≥20 percent at 14 days) was not associated with increased mortality in the enalapril group, but was associated with increased mortality in the placebo group

Renin-angiotensin-aldosterone-system antagonist

- RAAS antagonists in CRS
 - Clinical trials not specifically focused on patients with the CRS
 - Subgroup analysis and cohort study
 - The beneficial effect of RAAS antagonism on clinical outcomes is not mitigated by concomitant CKD
 - Initiation of RAAS antagonists
 - 10 ~ 20% increase in sCr can be anticipated as ACEI is initiated
 - Increase of serum creatinine: frequently transient and reversible
 - Stabilization or even a decline of sCr levels d/t renoprotective effects of long-term ACEI administration
 - The risk of adverse events
 - The risk of adverse events including hyperkalemia and worsening renal function is higher than in patients without CKD
 - Patients with CKD should be monitored closely during periods of drug initiation and titration and should receive periodic monitoring of electrolytes and creatinine throughout the duration of therapy

ADHERE database

Table IV. Worsening Renal Function by propensity-matched comparison group

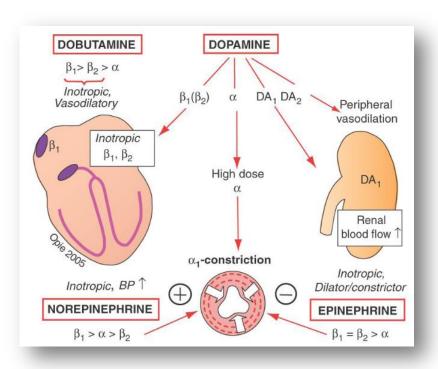
	WRF											
Comparison (treatment vs control group	WRF definition (increase in SCr of new dialysis)	Treatment, % (n)	Control, % (n)	RR (95% CI)	P							
NES + DIUR vs NTG + DIUR	0.5 mg/dL	12.3 (937)	10.5 (937)	1.17 (0.91-1.51)	.216							
	0.3 mg/dL with final >1.5 mg/dL	17.1 (937)	16.2 (937)	1.05 (0.86-1.29)	.620							
NES + DIUR vs INO + DIUR	0.5 mg/dL	11.8 (654)	11.3 (654)	1.04 (0.77-1.41)	.795							
	0.3 mg/dL with final >1.5 mg/dL	17.0 (654)	15.4 (654)	1.10 (0.86-1.41)	.453							
SEQ NES vs SEQ NTG	0.5 mg/dL	15.1 (543)	14.2 (543)	1.1 (0.57-1.51)	.731							
	0.3 mg/dL with final >1.5 mg/dL	20.3 (543)	19.2 (543)	1.07 (0.80-1.45)	.703							
SEQ NES vs SEQ INO	0.5 mg/dL	13.1 (1692)	16.0 (1692)	0.82 (0.69-0.96)	.015							
	0.3 mg/dL with final >1.5 mg/dL	17.9 (1692)	20.3 (1692)	0.88 (0.77-1.02)	.080.							
NTG + DIUR vs DIUR	0.5 mg/dL	10.1 (2288)	8.4 (9152)	1.20 (1.04-1.38)	.012							
	0.3 mg/dL with final >1.5 mg/dL	14.4 (2288)	13.3 (9152)	1.08 (0.97-1.21)	.176							
NES + DIUR vs DIUR	0.5 mg/dL	12.3 (1899)	8.5 (9495)	1.44 (1.26-1.65)	<.0001							
	0.3 mg/dL with final >1.5 mg/dL	17.9 (1899)	13.2 (9495)	1.35 (1.21-1.51)	<.0001							

Vasodilators

ASCEND-HF

End Point	Nesiritide (N=3496)	Placebo (N = 3511)	Percentage-Point Difference or Odds Ratio (95% Cl)†	P Value	
Primary clinical end points					
Death from any cause or rehospitalization for heart failure — no./total no. (%)	321/3423 (9.4)	345/3413 (10.1)	-0.7 (-2.1 to 0.7)	0.31	
Death from any cause	126/3490 (3.6)	141/3499 (4.0)	-0.4 (-1.3 to 0.5)		
Rehospitalization for heart failure	204/3422 (6.0)	208/3411 (6.1)	-0.1 (-1.2 to 1.0)		
Secondary clinical end points					
Persistent or worsening heart failure or death from any cause through hospital discharge — no./total no. (%)	147/3459 (4.2)	165/3462 (4.8)	-0.6 (-1.5 to 0.5)	0.30	
Days alive and out of hospital through day 30	20.9±6.9	20.7±7.1	0.2 (-0.13 to 0.53)	0.16	
Rehospitalization or death from cardiovascular causes — no./total no. (%)	372/3423 (10.9)	402/3415 (11.8)	-0.9 (-2.4 to 0.6)	0.24	
Safety end points					
Death from cardiovascular causes — no./total no. (%)	112/3498 (3.2)	124/3509 (3.5)	-0.3 (-1.2 to 0.5)	0.44	
Sudden death from cardiac causes — no./total no. (%)	19/3324 (0.6)	16/3327 (0.5)	0.1 (-0.3 to 0.4)	0.61	
Hypotension — no./total no. (%)	930/3498 (26.6)	538/3509 (15.3)	11.3 (9.4 to 13.1)	<0.001	
Asymptomatic	748/3498 (21.4)	436/3509 (12.4)	9.0 (7.2 to 10.7)	<0.001	
Symptomatic	250/3496 (7.2)	141/3509 (4.0)	3.2 (2.1 to 4.2)	<0.001	
>25% decrease in estimated GFR from study-drug initiation — no./total no. (%)	1032/3289 (31.4)	968/3278 (29.5)	1.09 (0.98 to 1.21)	0.11	
Baseline estimated GFR <60 ml/min/1.73 m ²	484/1714 (28.2)	449/1717 (26.2)	1.11 (0.96 to 1.3)	0.16	
Baseline estimated GFR ≥60 ml/min/1.73 m ²	548/1575 (34.8)	519/1561 (33.2)	1.07 (0.92 to 1.24)	0.38	

Vasodilators

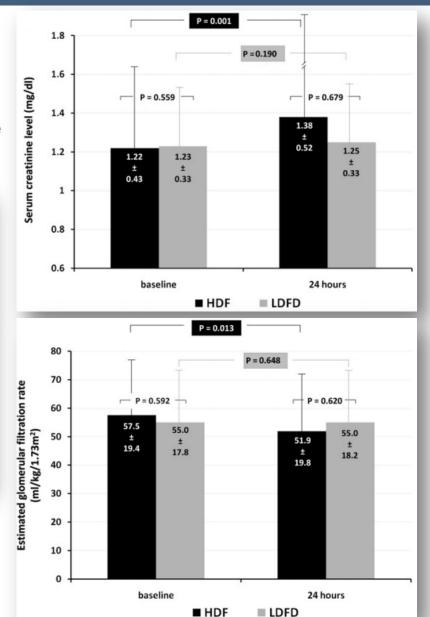

ROSE trial

esiritide strategy	Placebo (n = 119)	Nesiritide (n = 119)	
Decongestion end points			
Cumulative urinary sodium excretion from randomization to 72 h, mmol	540 (485 to 595)	515 (468 to 563)	.5
Change in weight from randomization to 72 h, lb	-7.73 (-9.01 to -6.44)	-7.15 (-8.57 to -5.73)	.6
Change in NT-proBNP from randomization to 72 h, pg/mL	-2020 (-2724 to -1316)	-2273 (-3010 to -1536)	.1
Renal function end points			
Change in creatinine level from randomization to 72 h, mg/dL	0.02 (-0.4 to 0.08)	0.02 (-0.06 to 0.09)	.9
Development of type 1 cardiorenal syndrome ^b during 72 h, No. (%)	24 (22)	28 (25)	.5
Symptom relief end points			
Global well-being visual analog scale ^c ; AUC from randomization to 72 h	4704 (4442 to 4965)	4498 (4257 to 4740)	.6
Dyspnea visual analog scale; AUC from randomization to 72 h	4998 (4723 to 5272)	4831 (4592 to 5070)	.8
Persistent or worsening HF ^d within 72 h, No. (%)	5 (4)	6 (5)	.7
Clinical outcomes			
Death from any cause within 72 h, No. (%)	0	0	N
Treatment failure ^e within 72 h, No. (%)	32 (28)	48 (40)	.0
Study drug stopped or dose decreased because of hypotension, No./total No. (%)	12/115 (10.4)	22/117 (18.8)	.0
Study drug stopped or dose decreased because of tachycardia, No./total No. (%)	1/115 (0.9)	0/117	.5
Study drug stopped before 72 h for any reason, No./total No. (%)	29/115 (25)	29/117 (25)	.9
Death through day 60, No. (%)	12 (10)	8 (7)	.3
Serious adverse event through day 60, No. (%)	24 (20)	21 (18)	.6
Days alive and free from HF hospitalization at 60 d	46.6 (44.0 to 49.2)	47.3 (44.9 to 49.7)	.6
Mortality rate at 180 d, %	21.1 (14.7 to 29.9)	19.1 (13.0 to 27.6)	.7

Inotropic drugs

- Intravenous inotropics
 - Dobutamine, dopamine, milinone
 - Has a role in the Tx of cardiogenic shock and in selected patients with ADHF
 - Routine use of short-term IV inotropics in ADHF : increase in mortality
- Inotropics in CRS
 - The role of inotropes in patients with CRS : uncertain
 - Lack of proven efficacy
 - Associated with adverse events

Inotropic drugs

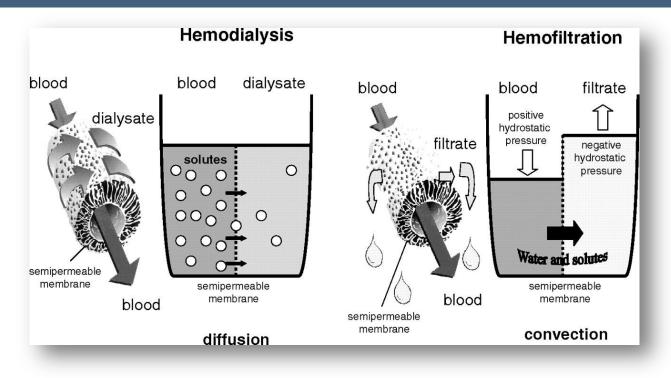

DAD-HF

60 patients with ADHF High dose furosemide vs. low dose furosemide + low dose dobutamine

End Daint	HDF Group	LDFD Group	D Malas
End Point	(n = 30)	(n = 30)	P Value
Mortality			
All cause	3 (10%)	3 (10%)	1.000
Cardiovascular	3 (10%)	2 (6.7%)	1.000
Non-HF-related	0 (0%)	0 (0%)	1.000
Due to worsening HF	3 (10%)	2 (6.7%)	1.000
Rehospitalization			
All cause	2 (6.7%)	6 (20%)	.254
Cardiovascular	2 (6.7%)	4 (13.3%)	.671
Non-HF-related	0 (0%)	1 (3.3%)	1.000
Due to worsening HF	2 (6.7%)	3 (10%)	1.000

Giamouzis G. J Card Fail 2010;16:922-30

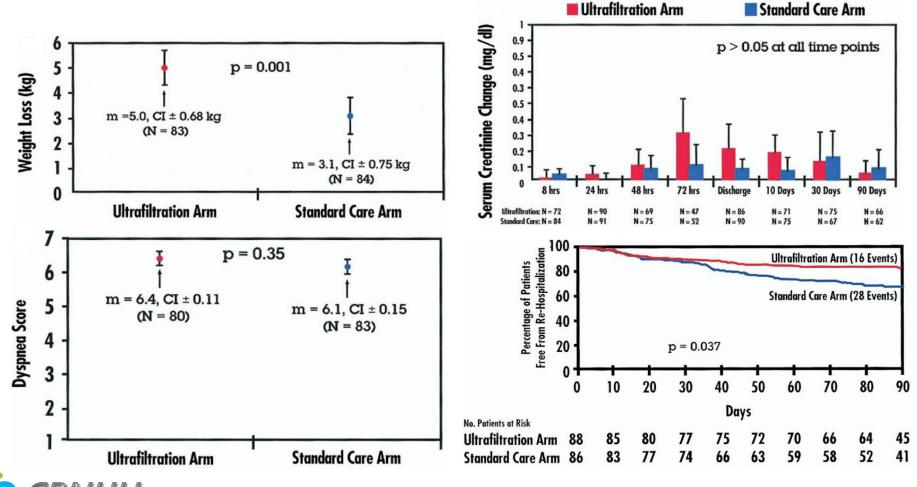
Inotropic drugs


ROSE trial

Dopamine strategy	Placebo (n = 119)	Dopamine (n = 122)	
Decongestion end points			
Cumulative urinary sodium excretion from randomization to 72 h, mmol	540 (485,595)	527 (473,581)	.75
Change in weight from randomization to 72 h, lb	-7.73 (-9.01 to -6.44)	-7.40 (-8.83 to -5.98)	.82
Change in NT-proBNP level from randomization to 72 h, pg/mL	-2020 (-2724 to -1316)	-2629 (-3470 to -1789)	.43
Renal function end points			
Change in creatinine level from randomization to 72 h, mg/dL	0.02 (-0.4 to 0.08)	0 (-0.7 to 0.08)	.78
Development of type 1 cardiorenal syndrome ^b during 72 h, No. (%)	24 (22)	23 (22)	.88
Symptom relief end points			
Global well-being visual analog scale; AUC from randomization to 72 h	4704 (4442 to 4965)	4553 (4305 to 4801)	.43
Dyspnea visual analog scale; AUC from randomization to 72 h	4998 (4723 to 5272)	4936 (4660 to 5211)	.92
Persistent or worsening HF ^c within 72 h, No. (%)	5 (4)	11 (9)	.14
Clinical outcomes			
Death from any cause within 72 h, No. (%)	0	0	NA
Treatment failure ^d within 72 h, No. (%)	32 (28)	35 (30)	.73
Study drug stopped or dose decreased because of hypotension, No./total No. (%)	12/115 (10.4)	1/111 (0.9)	<.001
Study drug stopped or dose decreased because of tachycardia, No./total No. (%)	1/115 (0.9)	8/111 (7.2)	<.001
Study drug stopped before 72 h for any reason, No./total No. (%)	29/115 (25)	25/111 (23)	.72
Death through day 60, No. (%)	12 (10)	11 (9)	.78
Serious adverse event through day 60, No. (%)	24 (20)	30 (25)	.41
Days alive and free from HF hospitalization at 60 d	46.6 (44.0 to 49.2)	47.3 (45.0 to 49.6)	.68
Mortality at 180 d, %	21.1 (14.7 to 29.9)	19.7 (13.5 to 28.1)	.87

Ultrafiltration

BNUH Cardiovascular Center

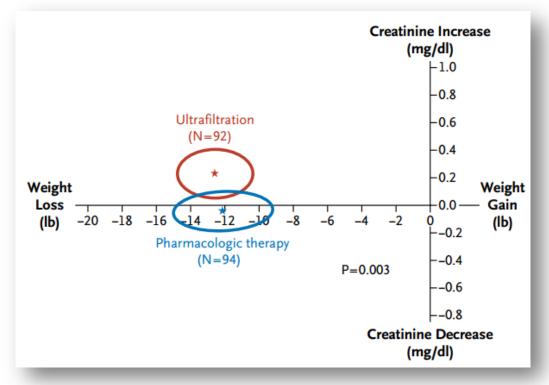


- Removal of isotonic fluid from the venous compartment via filtration of plasma across a semipermeable membrane.
- By removing isotonic fluid, ultrafiltration tends to maintain physiologic electrolyte balance, in contrast to diuretic therapy
- · May be helpful for fluid removal in acute decompensated HF in patients unresponsive to diuretics
- Not recommended as first line therapy for AHDF or as an effective therapy for CRS

Ultrafiltration

UNLOAD trial

200 hospitalized HF patients with hypervolemia : ultrafiltration vs. IV diuretics


CBNUH Cardiovascular Center

Ultrafiltration

CARRESS-HF trial

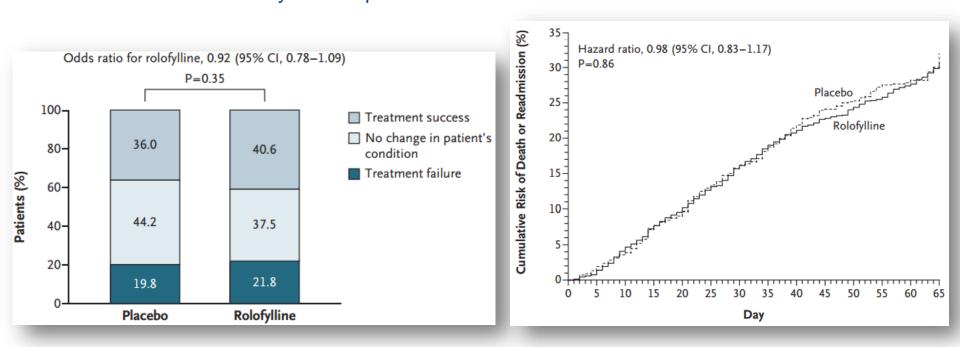
188 ADHF patients with WRF and persistent congestion

Stepped pharmacologic therapy vs. ultrafiltration

• Although weight loss was similar in ultrafiltration and stepped pharmacologic therapy groups, ultrafiltration therapy caused an increase in serum creatinine and a higher rate of adverse events.

Investigational therapies

Tolvaptan


A selective vasopressin 2 receptor antagonist that produces a water diuresis

	No. (%) o	f Patients	Hazard Ratio	P	Value											
	Tolvaptan (n = 2072)	Placebo (n = 2061)	(95% Confidence Interval)			ity										
Primary end points All-cause mortality	537 (25.9)	543 (26.3)	0.98 (0.87-1.11)	.68*	<.001	_										
Cardiovascular death or hospitalization for heart failure	871 (42.0)	829 (40.2)	1.04 (0.95-1.14)	.55*		_	0.3 dqL]]	Serun	n Creat	tinine			
Secondary end points Cardiovascular death or cardiovascular hospitalization	1006 (48.5)	958 (46.4)	1.04 (0.95-1.14)	.52*			Change From Baseline, mg/dL	•	₽		т	Ŧ	I	- I		
Incidence of cardiovascular mortality	421 <mark>(</mark> 20.3)	408 (19.8)		.67†		_	nge Fron	0	<u> </u>		Ţ. Ţ	<u> </u>	<u>Y</u>		******	
Incidence of clinical worsening of heart failure (death, hospitalization, or unscheduled visits)	757 (36.5)	739 (35.8)		.62†		_	ල -0.1 පි -0.2	Day	Day 7 or Discharge		8	16	24	32	40	48
		Tab		Disaste	_	P				L						
Change in body weight at 1	dav.		aptan 1) [n = 1999] ·	Placebo -0.97 (1.84) [n	-	Value <.001*	1	Ir	npatient			Af	ter Discl	narge,	wk	
mean (SD), kg	,,							1982		1829	1688	1434		1001	852	713
Change in dyspnea at 1 day % showing improvement in dyspnea score†		74.3 [n =	1835]	68.0 [n = 1829	9]	<.001‡		1987	1953	1821	1676	1435	1248	1015	855	706
Change in serum sodium at (or discharge if earlier), mean (SD), mEq/L§	t 7 days	5.49 (5.77	") [n = 162]	1.85 (5.10) [n	= 161]	<.001*										
Change in edema at 7 days (or discharge), % showi at least a 2-grade impro	ng	73.8 [n =	1600]	70.5 [n = 159	5]	.003‡										
Change in KCCQ overall su score at postdischarge mean (SD)		19.90 (18.7	71) [n = 872]	18.52 (18.83) [r	n = 856]	.39*	•				Cons	stam I	MA. JA	۹MA	2007	;297:

Investigational therapies

Adenosine A1 receptor antagonist

Adenosine : acting on the adenosine-1 receptor constricts the afferent glomerular arteriole, reducing GFR PROTECT trial 2,033 hospitalized HF patients with impaired renal function Rolofylline vs. placebo

Rolofylline therapy was associated with a higher rate of neurologic events (seizure and stroke)

Summary

- Renal disease in heart failure
 - Bidirectional interaction of heart and kidney
 - CRS 1 and CRS 2 : relatively common, independent predictor of poor prognosis
- Pathophysiology of CRS
 - Neurohormonal adaptations
 - Reduced renal perfusion
 - Increased renal venous pressure

Management of CRS

- Reversible ?
 - May have reversible components
- No definite medical therapy
 - The outcomes may be improved with aggressive fluid removal even if accompanied by sCr ↑
 - Ultrafiltration may be helpful for fluid removal in acute decompensated HF in patients unresponsive to diuretic therapy

Thank you for Your Attention !

